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Abstract. A procedure discussed in a previous work for properly defining the Feynman diagrams at any
number of loops in a modified version of PQCD, is employed here to evaluate some zero- and one-loop correc-
tions to the effective potential, as functions of the gluon and quark condensate parameters. The calculated
terms indicate an instability of massless QCD under the development of quark condensates even in the ab-
sence of the gluon one. Therefore, a mechanism is suggested for the dynamical generation of quark masses
and condensates. The absence of indications coming from lattice calculations to this possibility could be
determined by the current limitations in treating fermion determinants.

PACS. 12.38.Aw; 12.38.Bx; 12.38.Cy; 14.65.Ha

1 Introduction

The gauge invariance properties of the modified version
of perturbative QCD previously considered in [2–8] have
been discussed in [1]. In this work it was also possible to
remove singularities in the Feynman diagrams produced
by the presence of delta-function terms in the free prop-
agators. Two basic ideas allowed for this outcome. One
was the use of dimensional regularization to extend the
appearing δ(0)-like singularities to continuous D dimen-
sions, in the way early introduced by Capper and Leib-
brandt [9]. The second one was the use of Nakanishi in-
frared regularization for all the propagators. This proced-
ure leads to the vanishing of all the remaining singularities,
in the form of a Feynman propagator evaluated at zero
momentum. In addition, the discussion in [1] suggested
the identification of the propagators evaluated in [8], as
modified tree Green functions. It can be noted that they
also have zero order in the series expansion in the coup-
ling g, after considering the independent parameters, the
proper g, in addition to the gluon and quark condensate
parameters after having been multiplied by g2. This trans-
formation seems to allow for a rearrangement of the loop
expansion in a form for which the propagators derived
in [8] could play the role of new tree Green functions. Here,
we only consider one-loop terms in which a summation
over the zero order in the coupling self-energy insertions is
done.
Therefore, this work is devoted to an evaluation of se-

lected one-loop contributions to the effective potential in
order to get a sense of the possible physical predictions of
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the dynamical generation of quark and gluon condensates.
In addition, a sample calculation of a particular two-loop
term is done in order to get a measure of the influence of
higher corrections. It should be said that the usual defin-
ition of the effective potential is considered in this work in
order to avoid the property of being unbounded from be-
low of the directly evaluated Cornwall–Jackiw–Tomboulis
(CJT) potential [10, 11]. The approximation to be done
consists in inserting all the condensate dependent parts of
the one-loop self-energy corrections into the free propaga-
tors, by afterwards employing these dressed propagators
in the usual zero- and one-loop corrections, as proposed
in [1]. These corrected propagators precisely are the ones
that generated the constituent masses in the Refs. [4, 8].
Since this re-summation includes higher order diagrams,
a full discussion of the gauge parameter independence was
not allowed in the present work. Therefore, we adopted
the special gauge α= 1 which greatly simplifies the evalu-
ations. It can be added, however, that its special character
is being identified in the current literature for the Feyn-
man gauge. This is connected with the development of the
pinch technique, in which the end gauge invariant results
coincide with the ones in the Feynman gauge [12].
The resulting contribution to the effective potential in-

dicates a generation of dynamical quark and gluon conden-
sates. In the present approximation the evaluated poten-
tial shows the behavior of being unbounded from below.
This instability becomes stronger by increasing the gluon
condensate. However, even in the absence of the gluon con-
densate, the quark one is dynamically generated. This out-
come is consistent with the fact that the finite temperature
deconfinement transition should not drastically affect the
masses of the heavy quarks.
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The property of being unbounded from below and the
dependence of the quark condensate signals the need for
higher approximations in defining a minimum for the po-
tential. It can be noted that the arising picture precisely re-
sembles the one advanced in [8], as a possible consequence
of the close analogies between the initial wave-function for
the Wick expansion and the BCS states in superconduc-
tivity theory [3, 8]. At low values of the quark condensate
parameter, the gluon one develops a minimum. It would be
surprising that the value of mq required for the stabiliza-
tion could be as high asmtop =mq = 175GeV (as given by
the pole of the quark propagator for high mq values [8]).
However, we cannot yet disregard this possibility, and the
search for an estimation of the stabilizing terms should be
considered.
In addition, a particular two-loop contribution to the

potential as a function of the quark condensate was also
evaluated. The outcome for this quantity turned out to be
finite after including the corresponding quark condensate
dependent part of the usual quark counterterm. This re-
sult gave us confidence that the renormalization procedure
can be well implemented in the modified theory. However,
a careful discussion of this question should be considered in
more detail.
The question of the gauge parameter dependence of

the calculations was addressed in [1]. The gauge invari-
ance of the physical quantities and the validity of the same
Ward–Takahashi–Slavnov identities as in PQCD were ar-
gued there. This result corroborates the calculations sup-
porting this validity in [4, 6, 7]. It is clear that the modified
theory is a multi-parameter one, in which the implementa-
tion of the gauge invariance should be valid in each order
of a triple series expansion. However, the perturbative se-
ries is also associated to a massless theory. Therefore, as in
the simpler case of scalar electrodynamics, special partial
summations should be made in order to get an alternative
diagram expansion incorporating the condensate constants
defining the new scales. Moreover, the implementation of
gauge parameter independence turns out to be an addi-
tional requirement for the mentioned re-summations. How-
ever, this problem is a subtle one and needs a separate
study, to be performed elsewhere.
The work is organized as follows: in Sect. 2, the propa-

gators employed in the calculations are presented and the
effective action vacuum diagrams described. The zero- and
one-loop potential contributions are discussed in Sect. 3.
Section 4 is devoted to an exposition and a discussion of
the results of the evaluations done. Appendix A describes
the evaluation of the sample two-loop term of the effective
action. In the summary the main results of the work are
briefly reviewed.

2 Propagators and effective action

In the next sections the evaluation of the effective potential
including zero- and one-loop corrections will be considered.
The contributions will be calculated by inserting the infi-
nite ladder of condensate dependent one-loop self-energy

parts in the original free propagators following the rules de-
fined [8]. The propagators for quarks and gluons, as well as
for the condensate lines defined in [8] are given as

Gabgµν(p,m) =
δab

(p2−m2+iε)

(
gµν −

pµpν

p2+iε

)

+
αpµpν

(p2+iε)2
δab (1)

=
δab

(p2−m2+iε)

(
gµν −

βpµpνm
2

(p2+iε)2

)
,

β =1 ,

Gf1f2q (p,M, S) =
δf1f2(

−pµγµ
(
1− M

2

p2

)
−
Sf1
p2

) , (2)

χab(p) =−
δab

p2+iε
, (3)

Gabm =−
im2

g2
δab δ(p) , (4)

GS =
i4π4Sf
g2CF

δabδf1f2δ(p) , (5)

where (1)–(3) are the gluon, quark and ghost propagators
respectively and (4) and (5) the gluon and quark conden-
sate ones. In this work we will adopt the general conven-
tions for the spinor, color and Lorentz groups, free propa-
gators and interaction vertices of [13].
The parameters m2,M, Sf are related with the con-

stants Cg and Cq [1, 8] characterizing the gluon and quark
condensates, as follows:

−m2 =m2g =
6g2Cg

(2π)4
, (6)

Sf =
g2CF

4π4
Cq , (7)

m2 = fM2, f =±

(
3

2

)2
, (8)

g2 = g20µ
2−D2 , (9)

D = 4−2ε .

In these relations the parameter f =±(32 )
2 will be con-

sidered for both values of its sign. However, it should be
underlined that only the negative value was implied by the
construction done in [3]. In that work, it followed that if the
parameter Cg is a positive one, then the gluon mass in the

lowest approximation becomes tachyonic (m2 =−
6g2Cg
(2π)4

).

On the other hand, the constituent mass for light quarksM
becomes real. However, as it is simple to evaluate the ex-
pressions for the positive choice of f , sometimes it will be
done below. It should be mentioned that for this value of
the parameter, the gluon mass is real. Moreover, its value
is near the estimated one due to other studies [14], m =
0.5GeV. In contrast, the constituent mass gets a tachyonic
value. However, in our view, a study of the physical justifi-
cation of the positive choice of f deserves to be done, since
the evaluations in this case could be related with the results
of the approach in [15].
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It should be explicitly noted that only one flavor is
assumed to be condensed in the present discussion. This
condition was chosen because at the present level of ap-
proximation, the consideration of various flavors will sim-
ply lead to the addition of identical fermions contributions
to the potential. The question of the possible interference
of various quark condensates, since it needs higher order
approximations for its appearance, will be relegated to fur-
ther studies. It is clear that this is a relevant point, be-
cause only in the case that the presence of various kinds
of such condensates will be rejected by the system, the dy-
namical generation of only one (main) quark condensate
will be preferred. This could occur, for example, thanks to
the presence of terms in the effective potential growing in
value when more than one condensate is present. This ef-
fect seems to be possible, but its consideration needs at
least three-loop corrections, in which different quark loops
can start to appear [8].
The collection of zero- and one-loop diagrams which

were evaluated are illustrated in Fig. 1. The diagram Γ1 is
the only one not having closed loops, that is, a tree correc-
tion. Γ2 and Γ3 show the usual gluon and quark one-loop
corrections associated to the propagators (1) and (2) re-
spectively. Further, the diagrams Γ4, Γ5, Γ6 and Γ7 are
related with the one-loop corrections being “descendant”
from the two-loop ones due to the cancellation of one of the
two-loop integrals by a condensate propagator, and with
the insertion of all self-energy insertions independent of the
coupling g leading to the propagators (1) and (2) in the
other two lines [1, 8].
Finally in Fig. 2 the diagrams Γ8 and Γ9, Γ10 and Γ11

are defined as follows: Γ8 is the standard diagram for the
two-loop correction including all the coupling independent
self-energy insertions in its internal lines; Γ9 is the same

Fig. 1. The figure shows the seven Feynman diagrams defin-
ing the zero- and one-loop contributions evaluated in the work.
The lines having cuts correspond to the condensate propaga-
tors. Therefore, although the associated diagrams may look as
two loop ones, the delta functions associated to them effectively
cancel one of the loop integrals

Fig. 2. The figure illustrates: a The two-loop fermion contri-
bution Γ8, considered in the work for getting a sense of the
influence of the higher loops; b the subtracted diagram Γ9,
which is the same Γ8 evaluated at S = 0; c the diagram asso-
ciated to the fermion counterterm Γ10 and d this last diagram
taken at S = 0 and indicated as Γ11

contribution as Γ8 but taken in the limit S→ 0, which is
substracted in order to consider only the quark condensate
dependent part of the two-loop term. The limit S→ 0 is
indicated by the rings in the fermion lines. Finally Γ10 is
the g2 contribution associated to the fermion counterterm
and Γ11 is the same contribution in the limit S→ 0 and
is substracted, again, in order to only consider the quark
condensate dependent part of the potential. The momen-
tum integrations, in writing the diagram expressions, will
be taken in Minkowski space, for afterwards we perform
theWick rotation. However, it should be made precise that
in order to make the rotation without encountering poles,
the sign of m2 should be positive (f = (32 )

2). However, we
will perform the rotation for the two signs of f without in-
cluding the terms that could be incorporated by rounding
the poles in the p0 variables when deforming the integra-
tion contour if f takes its negative value. Therefore the
results obtained for f negative should be interpreted as
the evaluation of the effective potential in Euclidean field
theory. That is, the evaluated quantity corresponds to the
thermodynamical effective potential in the limit of zero
temperature.
The employed expression for the fermion renormaliza-

tion constant is given by [13]

(Z2−1) =−
g2CF

(4π)2
β

ε
,

TR =
1

2
, CG =N, CF =

N2−1

N
.

As was remarked before, only one quark flavor will be
considered for the present qualitative discussion, since up
to this level all the quark flavors will produce a sum of iden-
tical contributions, having the same functional dependence
on their respective condensates. However, the fact that
light quarks exist furnishes a guiding principle in the sense
that the mass acquired by them, if their quark condensates
do not develop, should coincide with the parameter M [8]
at the minimum of the effective potential.
We underline again that the value of the renormalized

gauge parameter α is chosen to be equal to 1. This selec-



358 A. Cabo Montes de Oca, D. Mart́ınez-Pedrera: Effective potential evaluations in a modified PQCD

tion was done in order to simplify the evaluations, thanks
to the simpler tensor structure of the gluon propagator in
this gauge. In addition, since a study of the best approach
for the re-summations of the Feynman diagrams has not
yet been done, the prescriptions for the gauge invariance
of the concrete calculations also have not yet been defined.
The real possibility of solving these practical difficulties is
however, indicated by the positive results on the gauge in-
variance properties obtained in [1].

3 Zero- and one-loop terms

The results for the evaluation of contribution to the one-
loop effective potential Γ1 to Γ7 will be exposed below in
consecutive order.

3.1 Zero-loop term

The direct substitution of the gluon condensate propagator
(4) in the analytic expression associated to Γ1, after evalu-
ating all the Lorentz, spinor and color traces, leads to

Γ (0) =−
2m4

g2
=−V (0).

That is, we have a positive potential proportional to
m4. As the one-loop term has zero order in the coupling
g, in the expansion in powers of the parametersm and Sf ,
this term shows a power−2 of g, since the original diagram
was of order two and there are two condensate lines in the
diagram which reduce the power by four according to [1].

3.2 Standard one-loop terms

The sum of the one-loop terms corresponding to Γ2 and Γ3
in Fig. 1 have the form

Γ
(1)
gf =Γ

(1)
g +Γ

(1)
f +Γ

(1)
S =−V

(1)
g −V (1)f −V (1)S

=−
i

2
Tr
[
log
[
G−1g (0)G

−1
g (m)

]]
+iTr

[
log
[
G−1q (0, 0)G

−1
q (M, 0)

]]
+iTr

[
log
[
G−1q (0, 0)G

−1
q (M,S)

]]
− iTr

[
log
[
G−1q (0, 0)G

−1
q (M, 0)

]]
,

where the traces are in the momentum space, Lorentz and
internal degrees of freedom as appropriate for each prop-
agator. The momentum argument has been omitted in
the Green functions defined in (1)–(5). These contribu-
tions have been expressed as the sum of a S independent
term corresponding to the same diagrams evaluated at
S = 0, plus a S dependent contribution vanishing in the
limit S→ 0. After calculating the Lorentz, spinor and color
traces for the S = 0 gluon and quark loops Γ

(1)
g and Γ

(1)
f ,

and dimensionally regularizing the integral, it follows that

Γ (1)g =−
(N2−1)(D−1)

2

∫
dpD

(2π)Di
log

[
p2

p2−m2

]
,

Γ
(1)
f = 4N

∫
dpD

(2π)Di
log

[
p2

p2−M2

]
.

But in both cases taking the derivative of the expres-
sions over the parameters in the gluon and quark cases
leads to simpler expressions. Then, after also performing
the Wick rotation in the temporal momentum component
according to

p0→ ip4 ,

the derivative over the parameters expressions can be inte-
grated in momentum space by employing the formula [13]

∫
E

dpD

(2π)D

[
1

p2+L2

]
=
B
(
D
2 , 1−

D
2

)
(4π)

D
2 −2Γ (D2 )

(L2)D−2,

in whichL can be selected asm orM as appropriate for the
gluon or quark terms respectively. The results of the inte-
grals, after being integrated again but over the parameters,
from their zero values to the original ones, and after also
considering that the extended dimensionD is such that the
real part ofD−2 is positive, allows one to write

Γ (1)g (m) =
(D−1)(N2−1)B

(
D
2 , 1−

D
2

)
(m2)

D
2

D(4π)
D
2 Γ
(
D
2

) ,

(10)

Γ
(1)
f (M) =−

8NB
(
D
2 , 1−

D
2

)
(M2)

D
2

D(4π)
D
2 Γ
(
D
2

) . (11)

At this point, after considering the relations (6), (8) and
(9) definingm andM as functions of the dimensionD, and
substracting the pole part in ε of (10) and (11), the mini-
mal substraction result for the one-loop effective action is

V (1)g (m) =−
(N2−1)

128π2
m4
(
−6 log

(
m2

4πµ2

)
−6γ+5)

)
,

(12)

V
(1)
f (M) =

3(N2−1)

128π2
M4
(
−2 log

(
M2

4πµ2

)
−2γ+3)

)
.

(13)

The S dependent correction Γ
(1)
S , after all the trace

evaluations are done, can be written as

Γ
(1)
S =+iTr

[
log
[
G−1q (0, 0)G

−1
q (M,S)

]]
− iTr

[
log
[
G−1q (0, 0)G

−1
q (M, 0)

]]
,

=2N

∫
dpD

(2π)Di
log

[
p2(p2−M2)2

p2(p2−M2)2−S2

]
.

This integral, after the Wick rotation, is convergent in
the limitD→ 4 and takes the form

Γ
(1)
S =−V (1)q,S =−2N

∫
E

dpD

(2π)D
log

[
p2(p2+M2)2

p2(p2+M2)2+S2

]

=−4N

∫ ∞
0

dpp3

(4π)2
log

[
p2(p2+M2)2

p2(p2+M2)2+S2

]
.
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3.3 One-loop terms descending
from the two-loop gluon diagrams

After writing the analytical expressions for the diagram Γ4
and evaluating the Lorentz, spinor and color traces, the ex-
pression can be rewritten in the form

Γ
(1,1)
2g =−V (1,1)2g =

(N2−1)Nm2

4(2π)D

×

∫
dpD

(2π)Di

(−6p2D+2(D+11)βm2−8m4/p2)

(p2−m2)2

=
(N2−1)Nm2

4(2π)D

×

∫
E

dpD

(2π)D
(6p2D+2(D+11)βm2+8m4/p2)

(p2+m2)2
.

In the second line of this equation theWick rotation has
been made. The integrals can be explicitly performed to
give

Γ
(1,1)
2g = −V (1,1)2g

=
(N −1)NΓ

(
1− D2

) [
3D2+2β(D+11)

(
1− D2

)]
4(2π)D(4π)

D
2

× (m2)
D
2

+
2(N −1)NΓ

(
D
2 −1

)
Γ
(
3− D2

)
(2π)D(4π)

D
2 Γ
(
D
2

) (m2)
D
2 .

After applying the same procedure for the analytical
expressions associated to the diagram Γ5, the result is

Γ
(1,2)
2g =−V (1,2)2g

=
(N2−1)N(D−1)m2

2(2π)D

×

∫
dpD

(2π)Di

1

(p2−m2)

[
1−
βm2

p2

]

=−
(N2−1)N(D−1)m2

4(2π)D

×

∫
E

dpD

(2π)D
1

(p2+m2)

[
1+
βm2

p2

]

=−
(N −1)N(D−1)(D−β)Γ

(
1− D2

)
2(2π)D(4π)

D
2

(m2)
D
2 .

It is an interesting outcome that after adding these two
contributions and removing the dimensional regularization
limit, the result remains finite, a fact that also eliminates
the logarithmic terms in the result. The total contribu-
tion of these terms for the potential at the end takes the
form

lim
D→4

(
V
(1,1)
2g +V

(1,2)
2g

)
=
3f2M4

8π2
.

3.4 One-loop terms descending
from the two-loop quark diagram

The last one-loop diagrams Γ6 and Γ7 correspond to the
descendants of the two-loop terms having a closed fermion
line. The integral expression obtained for them, after per-
forming the Lorentz, spinor and color traces, are not so
simple and we just numerically evaluated them in this
work. The resulting integral expressions are

Γ
(1,1)
2q =−V (1,1)2q

=
(N2−1)m2

3(4π)2

∫ ∞
0

dpp3
(2p2(p2+M2)2+DS2)

(p2(p2+M2)2+S2)2
,

Γ
(1,2)
2q =−V (1,2)2q

=NS2
∫
E

dp

(2π)4
(Dp2+m2− iε)

(p2(p2+M2)2+S2)(p2+m2− iε)
.

(14)

In ending this section it can be noticed that all the “de-
scendant” diagrams became finite ones.

4 Discussion

In this section, the results for the evaluation of the effect-
ive potential as a function of the condensate parametersM,
S and the couplings constant g are presented. The calcula-
tions are mainly done for the negative sign of the param-
eter f , which defines the relation between the constituent
quark and gluon mass parametersm andM through

m2 =−fM2 .

As it was remarked before, only this selection was aris-
ing in [3, 4], because the constituent mass value evaluated
there was satisfying the above relation with the negative
sign. However, evaluation for positive f is also commented
on sometimes below. It can be noted that for positive f the
results for the potential are real, a fact that is not occur-
ring for the more relevant case f =−(32 )

2. In addition, in
this situation, it turns out that the gluon mass value m,
once the gluon condensate 〈g2G2〉 is fixed, is m= 0.5 GeV,
coinciding with the result obtained in [14]. However, for
this positive sign of f , the absolute value of the constituent
mass for light quarks will be also 333MeV, but will be
of tachyonic character. These results are perhaps corres-
ponding with the alternative construction discussed in [15],
a question that surely deserves examination. In any case,
neither gluons nor quarks appear in Nature and perhaps
both will be absent as real excitations in both descriptions,
none of them showing asymptotic states after including
more corrections [8].
Let us define, for the purpose of graphical illustra-

tion, the quantities V (mq,M, g, µ) and its imaginary part
Vim(mq,M, g, µ) (where mq is defined as mq =MX), as
the sum of all the contributions to the effective potential
(the negatives of the effective action terms) evaluated in
the previous sections, after having been divided by the
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Fig. 3. The landscape picturing the dependence of the func-
tion V (the effective potential divided by 1/(8π4)) on the quark
condensate (measured bymq) and the gluon one (measured by
the constituent mass M). The values of the other parameters
are g = 2.74 and µ= 6.8 GeV. At mq = 0 the potential devel-
ops a minimum at a certain value ofM which can be varied by
changing the scale parameter µ. The dependence on mq indi-
cates an instability upon the generation of values of mq which
is not controlled at large mq values. It can be also seen that
even at zero value of the gluon condensate (M = 0) the poten-
tial remains unbounded from below. That is, the sole presence
of the quark condensate also makes the system unstable under
the generation of mq from the state at mq = 0. This property
suggests that the instability effect is not destroyed by the de-
confinement transition at high temperatures, as it should be
expected

constant factor 1/(8π4). In the various figures below, the
dependence of the quantity V , or its imaginary part, Vim, is
plotted as a function of two of its arguments selecting the
others as given by characteristic values of interest in the
present state of the discussion. The plots are associated to
the relevant case f =−(3/2)2 and sometimes comments on
the effect on the graphs of changing the sign of f will be
given.
Figure 3 illustrates the behavior of the effective poten-

tial as a function mq and the constituent mass M . Both
quantities are defined in the text in terms of the quark con-
densate and the gluon one through

X =
mq

M
=
S
1
3

M
=
1

M

(
gCF

4π4
Cf

) 1
3

,

M2 =
m2

f
forM real .

The value of the coupling g selected for the plot was
g = 2.74, which corresponds to a strong coupling value

α = g2

4π being near 0.6. In addition the mass scale param-
eter value µ= 6.8 GeV was fixed. Note that the minimum

at zero quark condensate mq = 0 is lying near 200MeV,
which is lower but close to the constituent mass value
M = 333MeV. It is interesting that, in order to fix the min-
imum of the potential for mq = 0 at this value of M , one
requires a relatively large value of µ. As it can be observed,
the landscape of the potential makes clear that the sys-
tem at mq = 0 dynamically develops a gluon condensate
parameter with a potential similar in form to the Savvidy
one in the early chromomagnetic field models [16, 17]. It
can be seen that the system at zero values of the parame-
ters shows an instability upon the generation of both gluon
and quark condensates. The effect is higher for the dynami-
cal generation of the quark one. It can also be observed that
the increasing of the gluon condensate parameter leads to
an increment of the instability of the generation of the
quark condensate. These properties are supporting the ex-
pectation expressed in [4, 8] about the color coupling being
able to produce a sort of superconductivity effect capable
to generate intensive quark condensates, resembling the
Ginzburg–Landau fields. If such an effect is really occur-
ring in Nature, the top condensate model could emerge as
a possible effective field theory determined by the strong
interactions of QCD. In this case, the Higgs field may be
nothing other than the top condensate value as proposed
in [18]. This occurrence could also explain the similarities
between the properties of the quark mass spectrum and the
spectrum of superconductivity systems, underlined in the
“democratic symmetry breaking” analysis in [19].
Figure 3 clearly shows that, in the framework of the

present approximation, and for reasonable values of the
coupling (α = 0.6), there are no terms that control the
instability for the generation of the quark condensate.
Therefore, it becomes clear that the determination of
a minimum for the potential should come from higher order
contributions. In [8], this behavior was guessed to occur
thanks to the color interaction between quarks. There-
fore, under the assumption that the technique used in
this work is well describing massless QCD, it follows that
this theory could dynamically develop quark condensates
and masses. This outcome could be another realization
of the dimensional transmutation effect [20]. A require-
ment for the next corrections to produce helpful results
for phenomenology is that the stabilizing potential at
large mq values behaves in such a way that its depen-
dence on M assures that the extreme point occurs at low
values of M . Then, the constituent mass could be fixed
to the observable value near 333MeV, by selecting appro-
priate values for the coupling and the scale parameter.
Also the value of mq ∼ 175GeV should be allowed to be
fixed.
Figure 4 shows the value of the imaginary part Vim of

the potential as a function ofM andmq. Note that the de-
pendence onmq is not rapidly growing, a behavior that, if
maintained for large mq values and in higher approxima-
tions, will indicate an increasing stability of the vacuum
being proved for the interesting region of high values of
mq. The picture is for f =−(32 )

2. For a positive value of f
the imaginary part of the potential vanishes. More gener-
ally, it can be remarked that all the other types of pictures
shown in this section, after being plotted for a positive
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Fig. 4. The plot of the function Vim for the same range of mq
and M used in Fig. 3 and the same fixed parameters g = 2.74,
µ= 6.8 GeV and f =−(3/2)2. It can be seen that the ratio be-
tween the imaginary and the real part of the potential near the
minimum at fixed mq decreases for the higher values of mq.
Also, the imaginary part tends to be zero if the gluon conden-
sate is disregarded in first approximation. For f = (3/2)2 the
potential is real for all the parameter values

value of f , show a very similar behavior. Further, Fig. 5
shows the dependence of the potential on the variable mq
and the gauge coupling g. Here the mass parameter M
was fixed to 333MeV, and again µ is taken as 6.8 GeV,
which fixes the minimum in the variableM atmq = 0 to be
near 333MeV. It should be recalled that we are consider-
ing that only one quark is being condensed. Therefore, the
light quarks which in the present discussion do not develop
their own condensates, should show at the considered level
of approximation the observable value of light constituent

Fig. 5. The potential plotted as a function of mq and g for
fixed values of M = 333MeV and µ= 6.8 GeV. It can be ob-
served that for each value of mq, there is critical coupling g
below which the potential becomes negative, that is, lower than
its value at vanishing condensates. This critical coupling de-
creases when X grows

Fig. 6. The plot of V as a function of M and g fixing values
of mq =MGeV and µ= 6.8 GeV. It shows that there is a crit-
ical value of the strong coupling g below which the potential
becomes positive for non-vanishing gluon condensates (M > 0)

masses. Since this quantity is fixed by the value ofM , the
graphics selected to be evaluated are always chosen to show
a minimum nearM = 333MeV formq = 0. This picture il-
lustrates how the potential becomes negative (lower than
its value at zero condensate state) when the coupling in-
creases its strength over an amount fixed by the value of the
quark condensate parameter mq. The greater the value of
mq, the smaller becomes the critical coupling.
Figure 6 shows the dependence of the potential on

the gluon condensate and the coupling constant for fixed
values of X =mq/M = 1 and µ = 6.8 GeV. It can be seen
that below a certain critical coupling value near 2, for all
values of M , the zero gluon condensate state is stable. In-
creasing the value ofX is not destroying this property, and
the value of the critical coupling is simply diminishing for
largerX values.

5 Summary

The physical implications of a modified perturbation ex-
pansion for QCD are investigated. Employing the proced-
ure for well defining the diagrams of the proposed expan-
sion introduced in [1], zero- and one-loop contributions to
the effective potential are evaluated. The potential, in the
considered approximation, indicates an instability of mass-
less QCD upon the generation of quark condensates. At
the considered approximation, there are no terms making
the potential bounded from below. Thus, the next correc-
tions should determine a minimum. Thus, the results in
the adopted approximations signal the dynamical gener-
ation of quark condensates andmasses. However, improved
evaluations in order to establish the obtained indications
should be performed. It can be remarked that the source
for this effect could not yet be detected by numerical stud-
ies, possibly because lattice QCD results are still limited in
the consideration of the fermion determinants.
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Appendix : A two-loop sample term

Let us evaluate in this appendix a sample two-loop term
for checking its influence on the zero- and one-loop results.
We will consider the full dependence on the quark con-
densate associated to the diagram Γ8 in Fig. 2 defined by
a fermion loop formed with propagators (2), showing two
quark–gluon interaction vertices. Therefore, the same dia-
gram expression but evaluated at S = 0 will be substracted
from this contribution. This term is associated with Γ9 in
Fig. 2. This substraction simply corresponds to the same
analytic expression of the diagram, but taken for S = 0,
and is represented by the same figure, but having small
rings in the quark propagators. As the diagram associated
to the fermion counterterm of the standard massless QCD
Γ10 (of order g

2, and therefore needed for renormalization
at one-loop level) is also depending on the condensate pa-
rameter S, the same kind of substraction is done of the
S = 0 counterterm associated to Γ11, in which, again, the
ring in the quark line means the evaluation in S = 0.
The substracted terms exactly give the full two-loop

term formed by two quark propagators and one gluon line
of the theory in the absence of the fermion condensate. As
mentioned before, we will postpone the evaluation of the
full two-loop gluon parameter dependence to further stud-
ies. The main reason for doing so is that for these terms
it is more relevant to precisely define the way in which
the renormalization should be done within the considered
scheme. As it is discussed in [1], at the two-loop level there
will appear an additional quark condensate dependence
coming from two-loop diagrams being descendant from the
higher loop terms of the original expansion. From explor-
ing evaluations already done, we know, however, that it
seems possible to cancel the two-loop infinities by renor-
malizing the condensate parameters. However, a clearer
understanding of the structure of the allowed counterterms
in the modified expansion is yet desirable before evaluating
the two-loop terms.
After calculating the spinor and color traces in the an-

alytic expressions corresponding to the Feynman graphs
appearing in Fig. 1, the considered contributions to the ef-
fective potential can be written in the form

Γ
(2)
fg (M,S)

=−
(N2−1)g2

4

∫
dDq

(2π)Di

dDq′

(2π)Di

1

((q− q′)2−m2)

×
1

(q2(q2−M2)2−S2)(q′2(q′2−M2)2−S2)

×

{
−4q2q′2(q2−M2)(q′2−M2)

[
(D−2)q · q′−β

m2

(q′− q)2

×

(
q · q′−

2q · (q′− q)q′ · (q′− q)

(q′− q)2

)]

+4

(
D−

βm2S2

(q′− q)2

)
q2q′2
}
, (A.1)

Γ
(2)
fg (M, 0) =−

(N2−1)g2

4

×

∫
dDq

(2π)Di

dDq′

(2π)Di

(−4)

((q− q′)2−m2)(q2−M2)(q′2−M2)

×

[
(D−2)q · q′−β

m2

(q′− q)2

(
q · q′−

2q · (q′− q)q′ · (q′− q)

(q′− q)2

)]
,

(A.2)

Γ
(2)
fC (M,S) = 4N(Z2−1)

∫
dDq

(2π)Di

(q2)2(q2−M2)

q2(q2−M2)2−S2
,

(A.3)

Γ
(2)
fC (M, 0) = 4N(Z2−1)

∫
dDq

(2π)Di

q2

(q2−M2)
. (A.4)

It can be noticed that the mass dimension of the pa-
rameter S is equal to 3, which is a relatively high value.
Therefore, the terms of the expansion in powers of S for
the denominator of the integrand associated to Γ

(2)
gf will

have three powers of the momentum convergence factors
for each power of S appearing in the expansion. The same
effect occurs in the fermion counterterm Γ

(2)
fC .

Then, it follows that the quantity

Γfg(m,M,S, ε) =Γ
(2)
gf (M,S, ε)−Γ

(2)
gf (M, 0, ε)

+Γ
(2)
fC (M,S, ε)−Γ

(2)
fC (M, 0, ε) ,

which contains, by construction, the whole dependence of
the considered two-loop term on the fermion condensate
parameter S, turns out to be finite in the limit D→ 4
(ε→ 0). This result is simply expressing the fact that the
renormalization constant Z2 of the massless QCD (deter-
mined in the absence of any condensate) is also able to
extract the infinities from the single fermion condensate
dependent contribution under study. As noticed before, ac-
cording to the above described procedure, the substracted
terms in addition with the two-loop ones not considered
exactly correspond to the two-loop plus counterterm con-
tributions in the absence of the fermion condensate. These
terms, including the ones descending form the higher loops,
according to the discussion in [1], were not considered here.
The finite contribution Γfg before passing to Euclidean

variables can be written as the sum of the following three
terms:

Γ
(2)
fg = Γ

(2,1)
fg +Γ

(2,2)
fg +Γ

(2,3)
fg (A.5)

Γ
(2,1)
fg =

(N2−1)g2

2

∫
dDq

(2π)Di
(A.6)

×

∫ (
dDq′

(2π)Di

4(D−2)q · q′

((q− q′)2−m2)(q′2−M2)
−
4

(4π)2
q2

ε

)
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×
S2

(q2(q2−M2)2−S2)(q2−M2)

+ (N2−1)g2
∫
dDq

(2π)Di

dDq′

(2π)Di

2(D−2)q · q′S4

(q2(q2−M2)2−S2)

×
1(

(q′2(q′2−M2)2−S2)(q2−M2)
×(q′2−M2)((q− q′)2−m2)

) ,

Γ
(2,2)
fg =−

βm2(N2−1)g2

4
(A.7)

×

∫
dDq

(2π)Di

dDq′

(2π)Di

4q2q′2(q2−M2)

(q2(q2−M2)2−S2)

×
(q′2−M2)(2q2q′2− q · q′(q2+ q′2))

(q′2(q′2−M2)2−S2)((q− q′)2−m2)((q′− q)2)2
,

Γ
(2,3)
fg =

βm2(N2−1)g2

4
(A.8)

×

∫
dDq

(2π)Di

dDq′

(2π)Di

4q2q′2

(q2(q2−M2)2−S2)

×
S2

(q′2(q′2−M2)2−S2)((q− q′)2−m2)(q′− q)2
,

where the term showing the 1
ε
factor is associated to the

fermion counterterm. It is responsible for the substraction
of the divergent part of the remaining expressions.
After performing the Wick rotation, it is possible to

eliminate the pole term in ε by using the identity

1

ε
=

(4π)
D
2 Γ (D2 )

[
−q2
]2−D2

εB(D2 , 2−
D
2 )B(

D
2 −1,

D
2 −1)

∫
dDq′

(2π)Di

1

(q− q′)2q′2
.

Then, the finite fermion condensate dependent contri-
bution to the particular two-loop term evaluated here, in
the limit ε→ 0, can be expressed as follows:

Vfg =−Γffg =−v0
[
v
(1)
f + v

(2)
f + v

(3)
f + v

(4)
f + v

(5)
f

]
,

v0 =
4

(4π)4
(N2−1)g2M4 .

The quantities v
(i)
f , i= 1, 2, 3, 4, 5 appearing above were

reduced to simple 2D integrals after performing the angu-
lar integrations in the four-dimensional Euclidean space.
They take the explicit forms

v
(1)
f =−2X6

∫ ∞
0

dq

∫ ∞
0

dq′

×
q4q′4

(q2(q2+1)2+X6)(q′2(q′2+1)2+X6)

× ln

(
q2+ q′2+2qq′+f− iε

q2+ q′2−2qq′+f− iε

)
,

v
(2)
f =+X6

∫ ∞
0

dq

∫ ∞
0

dq′
q3q′3

(q2(q2+1)2+X6)(q2+1)

×

{
1

q′2(q′2+1)
+
q2+ q′2+f− iε

4qq′(q′2+1)

× ln

(
q2+ q′2+2qq′+f− iε

q2+ q′2−2qq′+f− iε

)

−
q2+ q′2− iε

4qq′3
ln

(
q2+ q′2+2qq′− iε

q2+ q′2−2qq′− iε

)}
,

v
(3)
f =−X

12

∫ ∞
0

dq

∫ ∞
0

dq′

×
q3q′3(

(q2(q2+1)2+X6)(q′2(q′2+1)2+X6)
×(q2+1)(q′2+1)

)

×

{
−1+

q2+ q′2− iε

4qq′
ln

(
q2+ q′2+2qq′−f2− iε

q2+ q′2−2qq′−f2− iε

)}
,

v
(4)
f =−β

∫ ∞
0

dq

∫ ∞
0

dq′q3q′3(q2+1)(q′2+1)

×

{
q2q′2

(q2(q2+1)2+X6)(q′2(q′2+1)2+X6)

−
1

(q2+1)2(q′2+1)2

}

×

{
1+
(q2+ q′2− (q

2−q′2)2

f )

4qq′

× ln

(
(q− q′)2+f− iε

(q+ q′)2+f− iε

(q+ q′)2− iε

(q− q′)2− iε

)}
,

v
(5)
f =−

βX6

2

∫ ∞
0

dq

×

∫ ∞
0

dq′
q4q′4

(q2(q2+1)2+X6)(q′2(q′2+1)2+X6)

× ln

(
(q− q′)2+f− iε

(q+ q′)2+f− iε

(q+ q′)2− iε

(q− q′)2− iε

)
,

in which, as before, the dimensionless quantities X are
given as follows:

S =M3X3 .

The ε parameter is retained here, since it helps to regu-
larize the integrals even in the Euclidean case when f is
negative.
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